On Some Fundamental Properties of P2P Push/Pull Protocols

Renato Lo Cigno1, Alessandro Russo1

Damiano Carra2

1DISI - University of Trento

2Institut EURECOM

June 4th, 2008
Outline

1 Introduction
 - Media Streaming
 - Peer-to-peer Solution

2 Interleave protocols
 - Interleave Protocol
 - Interleave Implementation
 - Results

3 Conclusion
 - Summary
Media Streaming

Enables live or on-demand distribution of multimedia content on the Internet: the problem is delivery of large amount of data with timing and quality constraints to many users

- Video on Demand (VoD)
- Live Streaming

Goal: design a content distribution system which can scale with the number of participants
Peer-to-Peer Systems

Peer-to-peer Paradigm
Promises to solve the most critical problems in large scale streaming systems, exploiting the sharing principles of P2P networks

- Media content is divided in pieces or stripes and distributed among participants which collaborate between them
Background

- Peers strategies
- Peers overlay scope
- Peers transfer mechanisms
- Peers organization
Interleave protocols are mesh-based swarming systems

http://disi.unitn.it/networking/
Interleave protocols are mesh-based swarming systems
Possible Protocols

- One-sided pull protocols fail to exploit the potential of multiple path delivery
- One-sided priority push protocols tend to leave behind older chunks

These two distribution strategies may be integrated in order to combine their good properties
Overlay Management

- **Fixed size neighborhood**
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- **Fixed size neighborhood**
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- **Fixed size neighborhood**
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- **Fixed size neighborhood**
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- **Random Active Peer Selection in neighborhood**
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
Overlay Management

- Fixed size neighborhood
- Random Active Peer Selection in neighborhood
- Symmetric or Asymmetric neighborhood
The Protocol

- Pieces are numbered 1, 2, \ldots;
- Odd time slot:
 - Source pushes new piece;
 - Every other node pushes the highest numbered piece;
 - Piece with higher identifier obtained in the previous time slot is not chosen for transmission.
- Even time slot:
 - Every user sends a pull request for the lowest numbered piece;
 - Users do not distinguish pieces based on whether they were received in even or odd time slots.
Simulator Model

- PeerSim Simulator
 - Modularity;
 - Support of millions of nodes;
 - Peers dynamism;
 - Two simulation engines: synchronous and asynchronous;
 - Familiarity with java programming.

- Engines:
 - Synchronous model;
 - Asynchronous model.

- Overlay
 - Symmetric;
 - Asymmetric.
Asynchronous Model
Asynchronous Model (cont)

Outline
- Introduction
- Media Streaming
- Peer-to-peer Solution
- Interleave protocols
- Interleave Protocol
- Implementation
- Results
- Conclusion
- Summary

http://disi.unitn.it/networking/
CDF Completion Time - Symmetric and Asymmetric Overlay

Figure: Cycles (after last piece was pushed by the source)
Fraction of Push operations

Figure: CDF of the overall download time \((k = 16; c = 5 \cdot 10^3;\) upload bandwidth: 256kbit/s
CDF PUSH Operations - Symmetric and Asymmetric Overlay

sim. type / #nodes
 event / 500
 event / 1000
 cycle / 500
 cycle / 1000
CDF Maximum Delay - Symmetric Overlay

- upl bw / #nodes
 - 256 / 100
 - 256 / 500
 - 256 / 1000
 - 512 / 100
 - 512 / 500
 - 512 / 1000

Max Delay (s)

Number of pieces

http://disi.unitn.it/networking/
Media streaming: P2P matches media streaming resource requirements
- Interleave Protocol and its simple mechanisms
- Work: from a simple synchronous model to a more real asynchronous model
- Results for homogeneous scenarios in static network.

Next step:
- heterogeneous Network
- bandwidth fluctuation
- peer dynamism

Assumptions:
- all nodes contribute to file distribution
- concerning malicious peers
- free riders
- incentives for distribution

FEC or MDC codes to restore content with a subset of chunks
Media streaming: P2P matches media streaming resource requirements

Interleave Protocol and its simple mechanisms

Work: from a simple synchronous model to a more real asynchronous model

Results for homogeneous scenarios in static network.

Next step:
- heterogeneous Network
- bandwidth fluctuation
- peer dynamism

Assumptions:
- all nodes contribute to file distribution
- concerning malicious peers
- free riders
- incentives for distribution

FEC or MDC codes to restore content with a subset of chunks
Media streaming: P2P matches media streaming resource requirements

Interleave Protocol and its simple mechanisms

Work: from a simple synchronous model to a more real asynchronous model

Results for homogeneous scenarios in static network. Next step:

- heterogeneous Network
- bandwidth fluctuation
- peer dynamism

Assumptions:

- all nodes contribute to file distribution
- concerning malicious peers
- free riders
- incentives for distribution

FEC or MDC codes to restore content with a subset of chunks
Media streaming: P2P matches media streaming resource requirements

Interleave Protocol and its simple mechanisms

Work: from a simple synchronous model to a more real asynchronous model

Results for homogeneous scenarios in static network. Next step:

- heterogeneous Network
- bandwidth fluctuation
- peer dynamism

Assumptions:

- all nodes contribute to file distribution
- concerning malicious peers
- free riders
- incentives for distribution

FEC or MDC codes to restore content with a subset of chunks
- Media streaming: P2P matches media streaming resource requirements
- Interleave Protocol and its simple mechanisms
- Work: from a simple synchronous model to a more real asynchronous model
- Results for homogeneous scenarios in static network. Next step:
 - heterogeneous Network
 - bandwidth fluctuation
 - peer dynamism
- Assumptions:
 - all nodes contribute to file distribution
 - concerning malicious peers
 - free riders
 - incentives for distribution

FEC or MDC codes to restore content with a subset of chunks
Media streaming: P2P matches media streaming resource requirements

Interleave Protocol and its simple mechanisms

Work: from a simple synchronous model to a more real asynchronous model

Results for homogeneous scenarios in static network. Next step:
 ▶ heterogeneous Network
 ▶ bandwidth fluctuation
 ▶ peer dynamism

Assumptions:
 ▶ all nodes contribute to file distribution
 ▶ concerning malicious peers
 ▶ free riders
 ▶ incentives for distribution

FEC or MDC codes to restore content with a subset of chunks
Thanks

Q & A?